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I recently delved into the fascinating world of stochastic differential equations (in
short SDEs) through an open MIT course [1]. Amidst the richness of intriguing
concepts, one particular point caught my attention and left me pondering. I felt
like sharing this point with you.

The lecturer presented a recipe for solving SDEs analytically. They however
said that this recipe would only work for a few SDEs, that in other cases it
would fail and that instead you may have to feel the solution and verify it by
plugging it into the SDE. They then went on saying that anyways, nowadays
people would use computers to solve these equations.

If you share my enthusiasm for analytic solutions and have a desire to solve
SDEs - even in a scenario where you might choose to reside in a secluded forest
cabin devoid of electricity - then relying on a computer feels unsatisfactory.

While I am an admirer of verifying magically guessed solutions, I tend to forget
relevant details of these it-makes-you-look-like-a-genius approaches.

So, I was thinking, can we extend the recipe so that it is useful for more SDEs,
and in a way that is easy to memorize?

The lecturer considered SDEs of the following form

dXt = µ(Xt, t)dt+ σ(Xt, t)dBt

X0 = x

where B is a Brownian motion, µ and σ are sufficiently nice functions to guar-
antee existence and uniqueness of a solution, and x is a real number.

An (explicit) analytic solution is an expression Xt = . . . with no X-terms on its
right side. The presented recipe was to assume

Xt = f(Bt, t) (1)

for a function f to be determined as follows. First, apply Itô’s formula to obtain

df =

(
ft +

1

2
fBB

)
dt+ fBdBt
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where ft, fB and fBB denote partial derivatives. Second, match the terms in
this expression with the SDE to find

dt : µ(f, t) =

(
ft +

1

2
fBB

)
dBt : σ(f, t) = fB .

Third and final, find the function f which solves these equations.

While this recipe works to solve the SDE of the geometric Brownian motion
(meaning µ(Xt, t) = µXt and σ(Xt, t) = σXt), it fails for the Ornstein-Uhlenbeck
(OU) SDE (meaning µ(Xt, t) = −µXt and σ(Xt, t) = σ). There is a well known
method to neatly solve the OU SDE (using an integrating factor), but let’s try
a different approach, an extended recipe, and see if it works for other SDEs as
well.

What I am considering is to include two additional variables in (1):

Xt = f(Bt, t,

∫ t

0

g(s)dBs︸ ︷︷ ︸
=yt

,

∫ t

0

h(Bs, s)ds︸ ︷︷ ︸
=zt

) (2)

Let’s refer to these additional variables, the integrals, as y and z. Hence, to solve
the SDE we have to find f , g and h. This is done by matching the derivatives of
f with their counterparts in the SDE, as was done for the presented approach
(1) in the MIT course:

dt : µ(f, t) =

(
ft +

1

2
fBB

)
+ fzh(Bt, t) (3)

dBt : σ(f, t) = fB + fyg(t). (4)

This extended recipe will continue to require some guessing, but it should aid
in making meaningful conjectures. Indeed, finding a solution should feel more
like a walk through a maze where the turns correspond to trying meaningful ft,
fB , fBB , fzh() and fyg().

Let’s apply this modified recipe!

In all following examples, the initial condition is X0 = x > 0. Further, all
stochastic integrals are understood as Itô integrals.

Example 1) The Ornstein-Uhlenbeck (OU) process with drift

The SDE to solve is:

dXt = θ(µ−Xt)dt+ σdBt.

Writing Xt = f , then (3) and (4) become:

dt : θ(µ− f) =

(
ft +

1

2
fBB

)
+ fzh(Bt, t)

dBt : σ = fB + fyg(t).
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The second equation suggests to assume that fB and fyg(t) are constants (be-
cause the left side is constant). fB being constant implies fBB = 0. If we
additionally presume that fz = 0, the first equation simplifies to an ordinary
differential equation (ODE). Trying fz = 0 corresponds to a turn in the maze
which seems meaningful because the resulting ODE is sufficient to obtain a cor-
rect match with the SDE’s dt-term. With standard techniques (details can be
found in the appendix) we find that the solution of this ODE is:

f = Ce−θt + µ.

We however need to consider that C may be a function of B and y, meaning
C(Bt, yt) (excluding z because we assumed fz = 0), and that C(0, 0) = x − µ
to meet the initial condition (because B0 and y0 are both zero). Hence, the
solution of the ODE takes the form:

f = (k(Bt, yt) + x− µ)e−θt + µ

where k is a function to be determined.

We know that this function k must be linear in B (because otherwise fBB = 0
would be violated), and that it must satisfy k(0, 0) = 0. We finally use the
dBt-equation to find that k = y and g(t) = σeθt are feasible.

This reveals the solution of the SDE:

f = Xt = σ

∫ t

0

e−θ(t−s)dBs + e−θt(x− µ) + µ

Example 2) A square root process

The SDE to solve is:

dXt = dt+ 2
√
XtdBt.

Writing Xt = f , then (3) and (4) become:

dt : 1 =

(
ft +

1

2
fBB

)
+ fzh(Bt, t)

dBt : 2
√

f = fB + fyg(t).

The second equation suggests to try fy = 0 and a quadratic function in B,

f = Xt = (x+Bt)
2

Since this also solves the dt-equation for fz = 0, we have already found the
solution of the SDE.
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Example 3) A geometric Brownian motion with a drift and a time
trend

The SDE to solve is:

dXt = (µXt + α)dt+ σXtdBt. (5)

Writing Xt = f , then (3) and (4) become:

dt : µf + α =

(
ft +

1

2
fBB

)
+ fzh(Bt, t)

dBt : σf = fB + fyg(t).

If α were zero, then the solution would be the standard geometric Brownian
motion,

Xt = xe(µ−σ2/2)t+σBt .

This hints to try fy = 0 and use fz to match the αdt-term.

Given that the time trend αdt enters the SDE additively, and recalling the
derivative rule for products ( (fg)′ = f ′g + fg′ ) we proceed with:

f = xe(µ−σ2/2)t+σBtk(zt) (6)

for a function k to be determined. Recall that by definition z is a function of t,

zt =

∫ t

0

h(Bs, s)ds,

with derivative h(Bt, t). Therefore, the dt-equation becomes (using the product
rule and the chain rule):

dt : µf + α = µf + xe(µ−σ2/2)t+σBtk′(zt)h(Bt, t).

Hence,

α = xe(µ−σ2/2)t+σBtk′(zt)h(Bt, t)

which determines k to be of the form

k(z) = k1z + k2 = k1

∫ t

0

h(Bs, s)ds+ k2 (7)

with

k1 =
α

x
k2 = 1

h(Bt, t) = e−(µ−σ2/2)t−σBt .

Combining (6) and (7) gives the solution of the SDE:

f = Xt = e(µ−σ2/2)t+σBt

(
α

∫ t

0

e−(µ−σ2/2)s−σBs ds+ x

)
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Example 4) A geometric Brownian motion with an inverse drift

The SDE to solve is:

dXt =
1

Xt
dt+ σXtdBt.

Multiplying both sides by Xt hints at a variable substitution:

Yt = X2
t /2.

Yt satisfies the SDE:

dYt = XtdXt +
1

2
d⟨Xt, Xt⟩

where ⟨Xt, Xt⟩ is the quadratic variation ofXt (this follows from Itô’s change-of-
variable formula, see e.g. [2]). The SDE for Xt defines this quadratic variation
as σ2X2

t . Therefore,

dYt = 1dt+ σX2
t dBt +

1

2
σ2X2

t dt

= (σ2Yt + 1)dt+ 2σYtdBt.

This SDE for Yt is of the form (5) which we just solved in the previous example.
Hence,

Yt = e(σ
2−2σ2)t+2σBt

(∫ t

0

e−(σ2−2σ2)s−2σBs ds+
x2

2

)
.

Simplifying and substituting back for Xt provides the solution of the SDE:

Xt = e−(σ2/2)t+σBt

√(
2

∫ t

0

eσ2s−2σBs ds+ x2

)

I hope that you enjoyed this article. Let me know if you could apply this recipe
and whether you found it useful. Let me also know if someone else had already
come up with a similar or the same approach before me, or if you know a better
way to solve SDEs analytically, and, of course, if you noticed any error.
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APPENDIX

The ODE in the OU-SDE

We have to solve
dt : θ(µ− f) = ft

The homogeneous and particular solutions of this ODE are

fh = Ce−θt

fp = µ

Hence,
f = fh + fp = Ce−θt + µ.

The initial condition X0 = x determines that at t = 0

C + µ = x.

So far, this has been a standard ODE solving procedure. Now, what is non-
standard is that C may be a function of B and y, C(B, y), and that we need
C(0, 0) = x − µ to comply with the initial condition (because B0 and y0 are
both zero). Hence, this was the reason for defining

C(B, y) = k(B, y) + x− µ.
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